Totally Nonnegative and Oscillatory Elements in Semisimple Groups

نویسنده

  • ANDREI ZELEVINSKY
چکیده

We generalize the well known characterizations of totally nonnegative and oscillatory matrices, due to F. R. Gantmacher, M. G. Krein, A. Whitney, C. Loewner, M. Gasca, and J. M. Peña to the case of an arbitrary complex semisimple Lie group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 12 12 8 v 1 [ m at h . R A ] 1 5 D ec 1 99 9 TOTAL POSITIVITY : TESTS AND PARAMETRIZATIONS

A matrix is totally positive (resp. totally nonnegative) if all its minors are positive (resp. nonnegative) real numbers. The first systematic study of these classes of matrices was undertaken in the 1930s by F. R. Gantmacher and M. G. Krein [20, 21, 22], who established their remarkable spectral properties (in particular, an n × n totally positive matrix x has n distinct positive eigenvalues)....

متن کامل

Stratified Spaces Formed by Totally Positive Varieties

By a theorem of A. Björner [4], for every interval [u, v] in the Bruhat order of a Coxeter group W , there exists a stratified space whose strata are labeled by the elements of [u, v], adjacency is described by the Bruhat order, and each closed stratum (resp., the boundary of each stratum) has the homology of a ball (resp., of a sphere). Answering a question posed in [4], we suggest a natural g...

متن کامل

Total positivity in Schubert varieties

We extend the results of [2] on totally positive matrices to totally positive elements in arbitrary semisimple groups. Mathematics Subject Classification (1991). 14M15, 22E46, 15A48.

متن کامل

Interlacing Inequalities for Totally Nonnegative Matrices

Suppose λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of an n × n totally nonnegative matrix, and λ̃1 ≥ · · · ≥ λ̃k are the eigenvalues of a k × k principal submatrix. A short proof is given of the interlacing inequalities: λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k. It is shown that if k = 1, 2, n− 2, n− 1, λi and λ̃j are nonnegative numbers satisfying the above inequalities, then there exists a totally nonneg...

متن کامل

Multiplicative Principal-minor Inequalities for a Class of Oscillatory Matrices

A square matrix is said to be totally nonnegative (respectively, positive) if all of its minors are nonnegative (respectively, positive). Determinantal inequalities have been a popular and important subject, especially for positivity classes of matrices such as: positive semidefinite matrices, M−matrices, and totally nonnegative matrices. Our main interest lies in characterizing all of the ineq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998